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Abstract—Pressure Injuries are localized damages to the skin
caused by sustained pressure. It is a common yet preventable
disease affecting millions of patients. While there are multiple
scales to determine if a patient has pressure injury, these methods
suffer from high inter-rater subjectivity. To address this problem
we create predictive models for pressure injury using Centers for
Medicare & Medicaid Services claims data. The models show
relatively good predictive performance, we also explore aspects
of the model where they will be deployed in a real world clinical
settings.

Index Terms—Pressure Injury, HAPI, Braden Scale, CAPI

I. INTRODUCTION

Pressure injuries (also called pressure ulcers or bedsores)
are areas of localized skin and soft tissue damage caused
by sustained pressure. Pressure injuries typically start as an
area of redness over bony prominences, but they can quickly
develop into full thickness wounds if left untreated. Just within
the US, more than 2.5 million people develop pressure injuries
annually, making them one of the most common complications
occurring in hospitals. This problem impacts approximately
one-in-thirty hospitalized patients, is often associated with
higher risks of mortality and results in decreased quality
of life [1]. Complications from pressure injuries can trigger
other ailments like autonomic dysreflexia, bladder distension,
pyarthroses, sepsis, amyloidosis, urethral fistula, and gangrene
[2]. In some extreme cases complications from pressure injury
can even be life threatening. However, despite being common,
pressure injuries are considered largely preventable. Even
a small reduction in pressure injury rates would result in
significant improvement in population health.

To prevent pressure injuries, the National Pressure Injury
Advisory Panel (NPIAP), the European Pressure Ulcer Ad-
visory Panel (EPUAP) and the Pan Pacific Pressure Injury
Alliance (PPPIA) regularly publish clinical practice guide-
lines for pressure injury prevention. These evidence-based
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guidelines recommend implementing a series of prevention
measures based on a patient’s unique clinical circumstance
and risk factors. The definition of what constitutes pressure
injury is standardized by the aforementioned organizations.

While reliable risk assessment is considered the cornerstone
to a robust prevention strategy, traditional methods for iden-
tifying patients at risk for developing a pressure injury are
limited. For example, the Braden Scale [3], which is one of
the most widely used risk assessment tools, has been shown
to have insufficient predictive validity and poor accuracy [4].
Traditional risk assessment methods are also subjective in
nature and suffer from a high degree of inter-rater variability,
with dependence on the skill of the examiner. Traditional
methods are also typically based on a bedside assessment,
which is conducted at a moment in time without necessarily
considering a patient’s detailed medical history or other risk
factors that may not be directly observable. Additionally,
traditional risk assessment scales are not designed to adapt
to different patient populations, geographies, or care settings.
Therefore, developing a comprehensive and objective risk
assessment method, one that can accommodate diverse patient
populations and integrate detailed medical history and risk
factors, is warranted.

Pressure injuries are categorized into two broad categories
with respect to how a patient acquires the condition: Commu-
nity Acquired Pressure Injury (CAPI) and Hospital Acquired
Pressure Injury (HAPI). In this study, we have focused on
developing improved risk prediction algorithms for HAPI,
given the clinical and financial burden associated with pressure
injuries developed in the hospital. According to the Agency
for Healthcare Research and Quality (AHRQ), HAPI is the
only hospital-acquired condition with increasing prevalence
over the past 5 years, suggesting an urgent need for improved
prevention measures [5]. In this paper we not only focus on
the problem of predicting pressure injury using claims data



but also describe how such models could be used for triaging,
patient risk stratification and improving care.

II. RELATED WORK

Researchers have historically taken two general approaches
to addressing the problem of identifying pressure injuries. One
approach has been to use images of pressure injuries to identify
the condition or its severity [6]. The other approach is using
Electronic Health Records (EHR) to predict pressure injury
or its severity. A number of studies using machine learning
to predict pressure injuries and/or stages of pressure injury
have been done with varying levels of success [7] [8] [9] [10]
[11]. To the best of our knowledge only one of these have
been applied in a real world clinical setting. Jin et al deployed
an automated pressure injury risk assessment system (Auto-
PIRAS) that can assess pressure injury risk using EHR data,
without requiring nurses to collect or input additional data [8]

A number of studies have also been done to assess the
predictive validity of different scales for assessing pressure
injury risk, especially the Braden Scale. The Braden Scale
has moderate predictive validity and low predictive specificity
for pressure ulcers in long-term care residents [4] [12]. Several
meta-analysis of risk assessment scales, especially the Braden
Scale, reveal that a new and modified scale is needed [13] [12].
Machine learning analyses have also been done to determine
which factors may be helpful in predicting pressure injury. A
comprehensive study on pressure injury scales revealed that
the use of a particular scale is less important as long as
some validated scale is used in conjunction with additional
risk factors not captured by the risk assessment system [14].
Multiple studies of factor analysis of the most predictive
features for pressure injury reveal similar results (e.g., BMI,
age, length of stay, mobility, friction/shear, norepinephrine in-
fusion, peripheral vascular disease, pneumonia, cardiovascular
disease, etc.) [15] [16] [7] [17] [18] [19].

III. DATA

We used a subset of medical claims data from CMS (Centers
for Medicare & Medicaid Services) to serve as a representative
sample of the US population. This US federal database con-
tains detailed information for more than 40 million members
per year, comprising 400 million patient records in total (over
one TB of data). This CMS data contains data from in-patient,
out-patient and nursing home settings. The data subset that
was employed consisted of 11,264,189 claims corresponding
to 6,622,678 patients. The dataset encodes tens of thousands
of diagnoses for the whole population via Diagnosis-related
groups (DRG), which is a system used to classify hospital
cases. DRGs enable a systematic way to encode and track
diseases over time and even do population level analysis.
The DRGs include diagnosis code for pressure injuries. After
filtering for records with only PI codes we get 656,904 records,
corresponding to 438,883 patients. A summary of differences
and similarities between the characteristics of the HAPI cohort
and the non-HAPI cohort is given in Table I. The most glaring
difference between the two is the prevalence of previous

Feature HAPI  non-HAPI
Previous PI 18 2
CHF 41 30
DM No Complications 41 32
DM Complications 25 17
Hypertension 62 59
Recreational Drugs 1 2
Hypothroidism 19 18
Mechanical Ventilation 72 hours <1 <1
Cardiography 49 49
Social Detriments of Health 2 2
Sex=Famale 46 47
Race=White 78 81
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Fig. 1. Correlation between Pressure Injury and major comorbidities

pressure injury for the HAPI cohort and the preponderance
of certain conditions in HAPI i.e., for CHF (Congestive Heart
Failure) and two types of diabetes. This also implies that the
HAPI cohort in general is sicker than the non-HAPI cohort.

Quite often, pressure injuries are accompanied by other
comorbidities which may make a patient more vulnerable to
PI. Figure 1 shows correlations between pressure injury and
comorbidities that a patient may have. In general, we observe
that the correlations between different conditions are as ex-
pected (e.g., relatively high correlation between hypertensive
chronic kidney disease and acute kidney failure). One thing
that stands out is that there is a high level of correlation
(correlation = 0.37) between a patient developing a pressure
injury after being admitted to a hospital and the patient having
a prior history of diagnosis of pressure injury. This also makes
sense from a domain perspective since a patient who has had
pressure injury in the past is more vulnerable to get pressure
injury again [1].



IV. EXPERIMENTS

We pose the problem of predicting HAPI as a binary
classification problem where the two classes are patients with
HAPI vs. non-HAPI patients. The two classes are defined as
follows:

An encounter is considered to belong to the positive class
if the following conditions are true:

o Presence of PI DRG codes as specified by CMS in the

primary or secondary diagnosis

o 12 months of continuous enrollment in Medicare

o The PI diagnosis not in POA (present on arrival)

o The length of stay for the encounter is more than 1 day

Similarly, an encountered is considered to belong to the
negative class if the following conditions are true:

e 12 months of continuous enrollment in Medicare

o The length of stay for the encounter is more than 1 day

« The PI diagnosis not in POA (present on arrival)

o No current diagnosis of PI

Given these definitions, it should be noted that we are
predicting HAPI post-admission (i.e., predicting if a patient
will develop pressure injury after they have been admitted
to the hospital). While there is a relatively small number of
encounters that satisfy the condition of being in the positive
class i.e., developing PI post-admission, there are tens of
millions of encounters where the opposite is true. To ensure
that we are able to compare the two classes, we randomly
sampled encounters from the negative class. Multiple random
samples were employed and machine learning models were
built on these samples to ensure the validity of the results.
The sample that was employed had equal representation of
the two classes.

For baseline results we compared our model with two
baselines: One baseline was based on random predictions with
respect to label distribution and the other baseline was based
on a logistic regression model. The problem was set up as a
standard binary class classification problem with 10-fold cross
validation. After employing the filtering criteria described
above, the final set that was used for the experiments consisted
of 44,136 instances of the positive class, and An approximately
equal number of negative instances are randomly sampled.

Feature selection for the models was done based on a
combination of domain-driven and data-driven techniques. For
the domain-driven method, we had three different domain
experts go over a set of more than 500 different features
to determine the set of features that made the most sense
from a clinical perspective. In the data-driven method, we
employed various feature selection methods, like univariate
feature selection and recursive feature selection, to narrow
down the set of features. The final list of features that was
used for model building consisted of 188 features. A summary
of various feature categories and their corresponding examples
is given in Table II.

V. RESULTS

In addition to the two baselines described above, we also
built the classification models using six different machine

Category Number of Features = Example
Diagnosis 68 CHF
Behavioral 8 Recreational Drugs
Social 10 Homelessness
Procedure 42 Cardiography
Labs 42 Troponin
Medication 4 Vesopresser
Utilization 8 Previous Length of Stay
Demographics 6 Age

TABLE 1T

DISTRIBUTION OF FEATURE CATEGORIES

Metric Stratified Baseline Logistic Regression XGB
Accuracy 0.50 0.61 0.74
Precision 0.52 0.48 0.70
Recall 0.52 0.63 0.70
F-Score 0.52 0.54 0.70
AUC 0.50 0.66 0.74

TABLE TIT
SUMMARY OF PREDICTION RESULTS

learning algorithms (Naive Bayes, Extreme Gradient Boosting,
Decision Trees, Random Forest, AdaBoost with Decision
Stump). Here we report the results for the model correspond-
ing to the best predictive performance, which was the Extreme
Gradient Boosting (XGB) algorithm. The results are given
in Table III. The results show a remarked improvement of
performance over the two baselines. Additionally, we note
that the results are comparable to what has been reported
previously in the literature, but with one major difference -
most high performing models were reported on specialized
populations e.g., ICU, geriatric populations etc. For the current
set of experiments, we used the general population without
filtering for any specialized criteria. It has been previously
reported in the literature that PI prediction models perform
better for specialized populations. We note that one reason
for not using any specialized filtering criteria is that filtering
for ICU populations is non-trivial and not always reliable in
this dataset. This also implies that the model is likely to be
more robust, as it is able to perform well across multiple sub-
populations.

It is important to note that prediction of a particular outcome
is not necessarily sufficient to justify usage of a model in a
clinical setting. Model transparency may be required to foster
trust from clinicians and other healthcare personnel [20]. To
ensure that our models are transparent, we determined the top
explanation factors for the prediction models using the SHAP
framework [21]. The top factors are given in Figure 2, which
shows not only the top factors, but also their relative impor-
tance. One factor that consistently dominates other factors is
previous history of pressure injury. This makes sense from
a clinical perspective (i.e., if a patient has previous pressure
injury in the past, then they are indeed more susceptible to
pressure injury). Additional factors that stand out are age and
LOS (length of stay). These results are also consistent with
what we know from the domain regarding pressure injury risk
e.g., older patients are more at risk, male patients are also at
greater risk, and patients with longer lengths of stays are more
likely to be associated with greater risk for PI.
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Fig. 2. Top contributing features for PI prediction as computed by SHAP

Given that pressure injuries can occur for a variety of
reasons, we also explored model explanations for individual
patients (i.e., why is a particular patient predicted to have a
higher risk of pressure injury as compared to others). One such
peculiar instance is given in Figure 3 for illustration purposes.
Here, while the prior history of PI is the top factor driving risk
prediction, the rest of the factors are somewhat different. A
combination of multiple comorbidities unique to these patients
are driving the risk prediction. It is also interesting to note that
the The risk factors are for a female patient and thus gender
does not appear as a top factor for this high risk patient. The
example also illustrates how the risk prediction is localized to
the individual patient, based on their unique combination of
risk factors.

Given the number of features analyzed by this model, it
is best suited for integration with an electronic health record
system. However, the model can be adapted to accommodate
manual entry of features. For this model to be useful in the
context of manually inputting data, the number of features
analyzed may have to be reduced. In a real-world use case, a
clinician may need to input values for a patient in a dashboard
to compute the relevant risk score for a patient. In order
to ensure that this is feasible and to build well-informed
features for data, we reduced the number of features based
upon: (i) Common well-known features such as diagnosis and
procedures) (ii) Clinical domain knowledge from PI (such as
prior cases of PI), and the data itself (such as history of chronic
conditions). This resulted in a model of just 34 features with
some trade-off in performance, a summary of the previous
best results and the minimal model is given in Table IV. The
decline in performance is expected given that aa subset of the
features is being used.

Even with the reduction in performance the output of such
models can still be used to inform decision making in a clinical
setting.

VI. CONCLUSION AND FUTURE WORK

Reliably identifying patients at risk for pressure injury will
significantly aid prevention efforts. With more reliable risk
stratification, prevention efforts and resources can be more
appropriately allocated. Given the constraints on the healthcare

Metric General Model Minimal Model

Accuracy 0.74 0.61

Precision 0.70 0.66

Recall 0.70 0.45

F-Score 0.70 0.54

AUC 0.74 0.62
TABLE IV

SUMMARY OF PREDICTION RESULTS
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Fig. 3. Top contributing features for a particular patient

system, we need to improve our ability to successfully manage
large populations of patients in a clinically and financially
efficient manner. In this paper we addressed the problem
of predicting if a patient would develop a PI as a binary
classification problem. The results obtained were comparable
to the state of the art, with the additional benefit of being more
generalizable and amenable to a use-case that allows manual
data entry. A machine learning approach to assessing pressure
injury also carries the promise of adaptability of pressure
injury scales to different patient populations, geographies,
and care settings. We presented two models for prediction
of pressure injury, a ’complete’ model where input from 188
features was used and a minimal model consisting of only
34 features. Analysis of the models using the SHAP post-hoc
explanation model revealed that the top factors responsible for
prediction was in accordance with domain knowledge related
to pressure injury.

Developing these prediction models were part of a technol-
ogy demonstration project which is work in progress currently.
Our plan is to test these models in a real world clinical setting.
Our next step is to develop a dashboard that allows testing
of the minimal model. This dashboard will allow clinicians
to input relevant variables into a model to help risk stratify
patients. It should be noted that while the minimal model
consists of 34 features, 31 of these features are related to
previous diagnosis. We can thus group these into a single
category from which the end user can select the ones which
are applicable to the patient. The risk assessment could then be
used to determine how much a patient should be prioritized for
preventive care in order to reduce the risk of pressure injury.
A prototype of such a dashboard is given in Figure 4, here the
healthcare personnel has the option to input data from a limited
number of variables as described by the minimal model.
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Fig. 4. A Prototype of the Clinical tool for predicting Pressure Injury

The output of the model will be a risk score correspond-
ing to the prediction probability for that instance. Such a
dashboard would also enable the end user to determine how
differences in the presence or absence of certain conditions
would impact the prediction of the outcome. As an example
consider that assuming all factors are equal, the risk score
for men is likely to be higher as compared to men. This is
also in concordance with what we know about the prevalence
of pressure injury across genders in the vast medical literature
[2]. As part of future work, we are also working on improving
the predictive model for the general model as well as for
the minimal model. The long term plan is to integrate the
dashboard in the clinical workflow so that it can be adopted
readily by clinical staff. Lastly, once the dashboard has been
tested among a group of users in a clinical setting via user
acceptance tests in various hospital systems, we hope that it
could then be deployed.
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