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Abstract

The hospital readmission rate of patients within 30 days
after discharge is broadly accepted as a healthcare qual-
ity measure and cost driver in the United States. The
ability to estimate hospitalization costs alongside 30
day risk-stratification for such readmissions provides
additional benefit for accountable care, now a global
issue and foundation for the U.S. government mandate
under the Affordable Care Act. Recent data mining ef-
forts either predict healthcare costs or risk of hospital
readmission, but not both. In this paper we present a
dual predictive modeling effort that utilizes healthcare
data to predict the risk and cost of any hospital readmis-
sion (“all-cause”). For this purpose, we explore machine
learning algorithms to do accurate predictions of health-
care costs and risk of 30-day readmission. Results on
risk prediction for “all-cause” readmission compared to
the standardized readmission tool (LACE) are promis-
ing, and the proposed techniques for cost prediction
consistently outperform baseline models and demon-
strate substantially lower mean absolute error (MAE).

1 Introduction

Patients with chronic conditions repeatedly get admitted to
a hospital for treatment and care. They are often discharged
when their condition stabilizes only to get readmitted again,
many times within just a few days. This process is termed
as hospital readmissions. The readmission problem in the
U.S. is severe: currently one in five (20%) Medicare pa-
tients are readmitted to a hospital within 30 days of dis-
charge. Three quarters of these readmissions (75%) are ac-
tually considered avoidable (Jencks, Williams, and Coleman
2009). In addition to raising red flags about gaps in qual-
ity of care, hospital readmissions also place a huge financial
burden on the health system. In 2011, there were approxi-
mately 3.3 million adult 30-day all-cause hospital readmis-
sions in the United States, and they were associated with
about $41.3 billion in hospital costs (Hines et al. 2011).
Avoidable readmissions account for around $17 billion a
year (Jencks, Williams, and Coleman 2009). In the U.S., the
readmission rate of patients at a hospital is tracked as a proxy
for measuring the overall quality of treatment a patient has
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received, and, under the Affordable Care Act, Medicare has
started penalizing hospitals that have higher-than-expected
rates of 30-day readmissions’.

In this paper we tackle two related problems, namely (/)
predicting whether a patient is at risk of being readmitted
to the hospital within 30 days after discharge, and (2) es-
timating the cost of that hospital readmission. The ability
to prioritize a care plan along both of these variables can
enable hospital systems to more effectively allocate the lim-
ited human and budgetary resources available to the high-
risk individuals (i.e., higher-cost, earlier readmissions). Po-
tential care transition gaps and targeted interventions can be
derived from such models with a more profound impact on
overall population management.

Existing dedicated efforts for accurately predicting 30-
day risk of readmission are mostly focused on a specific co-
hort?, such as congestive heart failure patients (Balla, Mal-
nick, and Schattner 2008), cancer patients (Francis et al.
2015), emergency readmissions (Shadmi et al. 2015), etc.
While these models are very useful, there is a lot of value
in having all-cause risk and cost of readmission models that
are not tied to a specific disease. In addition to allowing to
derive risk and cost scores for patients who do not belong
to any of the well studied cohorts, these models can also be
used for incoming patients for which we do not know (yet)
which cohort they belong to. To the best of our knowledge,
none of the recent efforts predict cost or risk for all-cause
readmissions, which is a completely different medical and
data mining problem involving large, heterogeneous patient
population sizes compared to disease specific cohorts such
as heart failure.

In this study, we evaluate state-of-the-art machine learn-
ing techniques for predicting 30-day risk and cost on admis-
sion data of patients provided by a large hospital chain in the
Northwestern U.S. We treat the risk prediction problem as
a binary classification task, namely predicting whether the
next admission of a given patient will be within 30 days
or not. The LACE index is often used in clinical practice
for this purpose (Zheng et al. 2015). This index considers

"http://www.cms.gov/Medicare/Medicare-Fee-for-Service-
Payment/AcutelnpatientPPS/Readmissions-Reduction-
Program.html, accessed on Oct 22, 2015

2A sub-group of a given population with similar characteristics
(e.g., medical conditions), such as s group of diabetes patients.



four numerical variables, namely length of stay (L), acuity
level of admission (A), comorbidity condition (C), and use
of emergency rooms (E). The LACE score of a patient is ob-
tained by summing up the values of these four variables at
the time of discharge. A threshold (usually > 10) is then set
to determine which patients are at “high” readmission risk
(Zheng et al. 2015). We use LACE as a baseline to compare
the performance of the machine learning algorithms we in-
vestigate in this paper. We find that the use of machine learn-
ing techniques allows to achieve higher sensitivity (recall)
without penalizing the specificity and precision too much.
On the cost prediction side, we find that the simple base-
line strategy of forecasting that the next admission of a pa-
tient will cost as much as the average of his previous ad-
missions works reasonably well. In addition, a substantially
lower mean absolute error (MAE) can be achieved with M5
model trees.

The rest of the paper is organized as follows: after giv-
ing an overview of related work in Section 2, we formalize
the risk and cost prediction problems in Section 3. The ma-
chine learning algorithms applied in this paper for risk and
cost predictions are explained in Section 4. The dataset and
features are described in Section 5. In Section 6 we discuss
the performance of the algorithms. Finally, in Section 7 we
conclude with our overall findings.

2 Related Work

In this section, we give a brief overview of research efforts
done independently along each of the two dimensions: read-
mission risk prediction and healthcare cost prediction. To the
best of our knowledge, there is no existing work that studies
risk and cost prediction problems in a combined way.

Healthcare Cost Prediction

Previously proposed cost prediction models often used rule-
based methods and linear regression models. A challenge
with the rule-based methods (e.g. (Kronick et al. 2002)) is
that they require substantial domain knowledge which is not
easily available and is often expensive. Linear regression
models on the other hand are challenged by the skewed na-
ture of healthcare data. Healthcare cost data typically fea-
tures a spike at zero, and a strongly skewed distribution with
a heavy right-hand tail (Jones 2010). As a result, the predic-
tion models are posed with the challenge of an extreme value
situation. This phenomenon is also observed in the dataset
used in this study (see Figure 1). Consequently, several ad-
vanced statistical methods (in-sample estimation) have been
proposed to overcome the skewness issue, such as Gen-
eral Linear Models (GLM) (Manning, Basu, and Mullahy
2005), mixture models (Mullahy 1997), etc. For a compre-
hensive comparison of previously proposed statistical meth-
ods for healthcare cost prediction, we refer to the review
paper (Mihaylova et al. 2011). The development of health-
care cost prediction models using machine learning meth-
ods has been more recent (e.g., (Lahiri and Agarwal 2014;
Sushmita et al. 2015)). (Lahiri and Agarwal 2014) investi-
gate classification algorithms to predict whether an individ-
ual is going to incur higher or lower healthcare expenditure.
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(Sushmita et al. 2015) use three machine learning algorithms
for cost prediction — regression tree, M5 model tree and ran-
dom forest, and observe improved performance when com-
pared to traditional methods. In this paper, we also investi-
gate these algorithms for the task of predicting cost of hos-
pital readmission. To the best of our knowledge, their utility
for predicting the costs of hospital readmissions specifically
(as opposed to predicting general healthcare costs) has not
been investigated before.

Hospital Readmission Prediction

In 2011, there were approximately 3.3 million adult 30-day
all-cause hospital readmissions in the United States, and
they were associated with about $41.3 billion in hospital
costs (Hines et al. 2011). Many of these hospitalizations
are readmissions of the same patient within a short period
of time. These readmissions act as a substantial contribu-
tor to rising healthcare costs (Jencks, Williams, and Cole-
man 2009). Readmission rates are also used as a screening
tool for monitoring the quality of service and efficiency of
care provided by healthcare providers (Balla, Malnick, and
Schattner 2008). While predicting risk-of-readmission has
been identified as one of the key problems for the health-
care domain, not many solutions are known to be effec-
tive (Krumholz et al. 2007; Ottenbacher et al. 2001). In
fact, to improve the clinical process of heart failure pa-
tients for instance, healthcare organizations still leverage the
proven best-practices, called “Get With The Guidelines” by
the American Heart Association. In general, related work
on risk-of-readmission prediction has primarily attempted to
study cohort specific readmission risk, such as, heart failure,
pneumonia, stroke, and asthma, but the effort of designing
large scale machine learning algorithms for all-cause read-
mission is still at a rather rudimentary stage.

Despite several years of continued research efforts in
modeling risk of readmission and healthcare cost, a dual pre-
dictive tool that utilizes healthcare data to predict risk and
cost of hospital readmission has not been explored before.
This study makes the first step in that research direction.

3 Problem Description

The goal of this study is to predict a patient’s 30-day risk
of hospital readmission and the associated cost of that read-
mission. We assume that the learning task at hand is a com-
bination of a supervised classification problem (risk pre-
diction) and a regression problem for predicting the cost
(in dollars) of the readmission. The feature vector X; =
(i1, Ti2, ..., x;pr) of an instance 4 includes information
about general demographics such as age and gender of the
patient, as well as specific clinical and cost information at
the time of discharge from the hospital. The goal is to pro-
duce an output vector Y; = (y;1,ys2) consisting of a label
y;1 that indicates whether the next admission of the patient
will be in 30 days (“yes”) or not (“no”), and the cost ;5 of
the next admission. Let us use X to denote the set of all in-
stances (feature vectors), and let )V = {yes, no} x Rt be
the set of all dual labels. Given training examples of the
form (X;,Y;) with X; € X and Y; € ), the aim is to



X (Input Vector) Y (Output Vector)
Admission Next Admission
Unique Identifier Features (X) Risk (y1) Cost (y2)
idy L11, T2y enen T yes $45,132
idy T2, T2, e TN yes $41,305
idy T3], T32, ... TN no $17,809
ido TL1, TADy enen Tyng yes $21,305
ido T51, T52, -----T5N no $55,809

[ idg (testcase) | w61, @62, . -Tom | ? [ ? ]

Table 1: Example input and output scenario for the risk and
cost prediction task. Here, the first column indicates a unique
identifier for each patient in the dataset.

learn a model H : X — ) that can label new, unseen in-
stances from X’ with a dual label from ) in an accurate way.
We address this multi-label prediction learning problem in a
manner similar to binary relevance (Tsoumakas and Katakis
2007), by learning a model for each label:

e Risk of 30-Day Readmission — Classification Task:
For given training examples of the form (X, y;1), where
X; € X and y;; € {yes, no}, the goal is to learn a model
Hi : X — {yes, no} that accurately predicts whether the
next admission of a patient will be within 30 days.

e Cost of Readmission — Regression Task:
For given training examples of the form (X, y;2), where
X; € X and y;2 € R* (cost in dollars), the goal is to
learn a model Hs : X — R™T that accurately predicts the
cost of the next admission.

The combined model is then obtained as H(X) = (H1(X),
Ho(X)), for X in X.

We also tried other techniques for multi-label prediction
like — Label Powerset (Cherman, Monard, and Metz 2011)
and Chain Classifier (Read et al. 2009), but initial evaluation
results with these methods were not as good as those ob-
tained with the binary relevance approach, so we omit them
from this paper.

Table 1 illustrates the input and output representations for
the risk and cost prediction problem. Let us assume that the
patient with id; was admitted to the hospital four times (say
on Jan 14, Feb 2, Feb 28 and Apr 15). That means that he
had three readmissions, two within 30 days (high risk) with
cost being $45,132 and $41,305 respectively, and one after
30 days (low risk) with cost being $17,809. These response
features are constructed based on attributes from the origi-
nal, raw data (shown in Table 2). During the training phase,
data of patient id; and idy will be used to train binary classi-
fiers (to predict risk) and regression models (to predict cost);
during the test phase the models will be used to predict the
risk and the cost of patient ¢d3’s next encounter.

We evaluate the accuracy of the learned models in several
ways. Accuracy is traditionally measured as the percentage
of instances that are classified correctly. It has been empha-
sized that the use of accuracy as an evaluation measure for
data where there is an imbalance between positive and neg-
ative classes can yield misleading conclusions (Fatourechi
et al. 2008; He and Garcia 2009). Readmission data is typi-
cally imbalanced. As Table 2 shows, approximately 27% of
the admissions in our study are within 30 days (i.e. 27% pos-
itive instances), while the remaining 73% happen after 30
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days (i.e., 73% negative instances). In addition to accuracy,
we therefore also evaluate the binary classification models in
terms of sensitivity (recall), specificity (true negative rate),
and precision. Recall that sensitivity is TP/(TP + FN), speci-
ficity is TN/(TN+FP), and precision is TP/(TP+FP), with TP,
FP, TN, and FN respectively denoting the number of true
positives, false positives, true negatives and false negatives.
The performance of the cost prediction algorithms is eval-
uated using Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE), with a lower error indicating a bet-
ter performance.

4 Methods

In this section we give an overview of the machine learn-
ing algorithms used in this study. For risk-of-readmission
prediction we used state-of-the-art classification techniques,
while for cost prediction we used regression techniques.

Risk Prediction Methods

Support Vector Machine: A Support Vector Machine
(SVM) is a statistical learning method for training classi-
fiers based on different types of kernel functions — polyno-
mial functions, radial basis functions, etc. An SVM learns a
linear separating hyperplane by maximizing the margin be-
tween the classes (Drucker et al. 1996). The decision bound-
ary is maximised with respect to the data points from each
class (known as support vectors) that are closest to the deci-
sion boundary. For this study, we tested SVM with linear and
radial kernel, and we report the results for radial in Table 3
because its performance was better than the linear kernel set-
tings. We also tested for different regularization parameters
(C =1,5,10, 15), but the overall results did not change.

Logistic Regression: Logistic Regression is an exam-
ple of a discriminative classifier that models the posterior
p(y1|X) directly given the input features. That is, it learns
to map the input (X)) vector directly to the output class label
y1 (risk in our case). When the response is a binary (dichoto-
mous) variable, logistic regression fits a logistic curve to the
relationship between X and y; (Ng and Jordan 2001). The
class decision for the given probability is then made based
on a threshold value. The threshold is often set to 0.5, i.e. if
p(y1]X) > 0.5, then we predict that the next readmission
of the patient will be within 30 days, and otherwise not. We
tested with multiple threshold values to make the class deci-
sion.

Decision Trees: An alternative approach to linear classi-
fication is to partition the space into smaller regions, where
the interactions are more manageable. Like for the other
methods described in this section, the goal of a classifica-
tion tree is to predict a response y; (risk in our case) from
inputs X. This is done by growing a binary tree. At each
internal node in the tree, a test is applied to one of the in-
puts, and depending on the outcome, the left or the right sub-
branch of the tree is then selected. Eventually a leaf node is
reached, where the prediction is made. For this study, we
used an implementation of the classification and regression
tree algorithm (CART) (Breiman et al. 1984) in R. We tested
the performance of classification trees using different com-
plexity parameters (cp = 0.01, 0.001, 0.0005). In Table 3 we



report the results of the best performing tree with cp set to
0.01 value.

Random Forest: Random forest regression is an ensem-
ble learning method that operates by constructing a multi-
tude of regression trees at training time and outputting the
mean prediction of the individual trees for new observations.
Each tree is constructed using a random sample of the obser-
vation and feature space from the original dataset. This has
the effect of correcting the tendency of individual regression
trees to overfit the training data (Breiman 2001).

Generalised Boosted Modeling (GBM): Boosting is an
approach to machine learning based on the idea of creat-
ing a highly accurate predictive model ensemble by com-
bining many relatively weak and inaccurate models (Freund
and Schapire 1997). In other words, boosting is an optimiza-
tion technique that minimizes the loss function by adding, at
each step, a new model that best reduces the loss function.
It is often used to grow an ensemble of classification trees,
like we do in this paper. In this study we use the gbm im-
plementation of AdaBoost in R, which is an implementation
of extensions to Freund and Schapire’s AdaBoost algorithm
and Friedman’s gradient boosting machine?.

All the models are trained and tested using R*. Addition-
ally, we also set the output of each model to be the class
probability (prob= TRUE), instead of the class labels. This
was done in order to test for different decision threshold val-
ues (0.0 — 1.0) to find the optimal balance between differ-
ent evaluation measures. We report results for thresholds be-
tween 0.2 — 0.52 in Figures 2-5.

Cost Prediction Methods

Linear Regression: Linear regression is used extensively in
the literature on healthcare cost prediction, so, even though
it has its limitations, it can not be ignored in this study. We
use a linear regression model to predict cost using an M-
dimensional vector of predictive variables (see Table 2).

MS Model Tree: M5 model trees are a generalization
of the CART model (Breiman et al. 1984). The structure of
an M5 model tree follows that of a decision tree, but has
multiple linear regression models at the leaf nodes, making
the model a combination of piecewise linear functions. The
algorithm for the training of a model tree breaks the input
space of the training data through a recursive partitioning
process similar to the one used in CART. After partitioning,
linear regression models can be fit on the leaf nodes, making
the resulting regression model locally accurate.

In addition to the linear regression and M5 Model Tree
methods, decision trees and generalised boosted modeling
(GBM) as described for risk prediction task were also used
for predicting the cost.

5 Dataset and Features

The study in this paper includes admission data of pa-
tients provided by a large hospital chain in the Northwestern
United States. Each admission record includes demographic
information (e.g., gender, ethnic group), clinical information

3http://cran.r-project.org/web/packages/gbm/gbm.pdf
*http://www.r-project.org
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(e.g., primary diagnosis), care provider details, administra-
tive data (e.g., length of stay) and billing information (e.g.,
charge amount). First, we performed data filtering as part
of data pre-processing. Of the available ~221K admission
records, we excluded instances of admissions for which the
patient died before discharge, or was transferred to another
acute care facility within the hospital chain, or left against
medical advice. Additionally, we excluded records where
the next admission date is unknown, since they cannot be
used to evaluate the correctness of cost and risk of read-
mission prediction. We also excluded hospitalizations with
unspecified primary diagnosis.

Next, we performed several feature engineering steps.
There were 214 features in the raw data. We used a forward
stepwise regression approach (Derksen and Keselman 1992)
to select a subset of this feature set. This subset is shown
in Table 2. Most of the features from Table 2 correspond
directly to features from the raw data; others have been con-
structed based on previous history of the patient. That is,
most of the features are drawn from individual admission
records, but some are aggregated across multiple admission
records of the same patient. The features from the latter cat-
egory are:

e Number of Comorbidities: this is the total number of
unique comorbidities® that were registered for a patient up
to the time of discharge. We used the Elixhauser comor-
bidity (Elixhauser et al. 1998) information of a patient to
identify all comorbidities associated to that patient. Co-
morbidity is associated with worse health outcomes, in-
creased healthcare costs and is known to impact predic-
tion of risk of readmission (Donze et al. 2013). Therefore,
we use it as one of the predictor variables.

e Number of Existing conditions: this is is the total num-
ber of unique diagnoses registered for this patient up to
this point, including during previous admissions. The list
of existing conditions of a patient is represented using
ICD9-CM codes in the raw data (~4K distinct values).
We grouped the ICD9-CM codes using Clinical Classifi-
cation Software (CCS)°, and included the count of distinct
CCS codes per patient as a feature.

e Number of Previous Admissions: this is the total num-
ber of hospital admissions registered for this patient up to
this point. Here, the assumption is that a patient with a
history of several hospital admissions is more likely to be
readmitted again.

In this paper we use frequency counts ( e.g. Number of Co-
morbidities) to overcome the limitation of significant sparse-
ness in this dataset, for future research, we aim to ex-
plore statistical methods to overcome this limitation. Finally,
we randomly sampled ~10K instances with the feature set
shown in Table 2 to train and test our models.

>Two or more coexisting medical conditions or disease pro-
cesses that are additional to an initial diagnosis.
Shttps://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp



Feature Type Distribution
Gender Categorical Female (5,818)
Male (4,176)
Adult Boolean Yes (9,792)
No (202)
Age > 65 Boolean Yes (4,801)
No (5,193)
Ethnic Group Categorical | Caucasian (8,303)

African American (669)
Hispanic/Latino (257)
American Indian (185)
Asian (172)

Pacific Islander (157)
Multi-Racial (83)
Non-Hispanic (25)
Middle Eastern (18)
Eskimo (4)

Other (121)

Single (2,387)
Married (4,148)
Widowed (1,939)
Divorced (1,084)
Separated (211)
Significant Other (192)
Legally Separated (23)
Domestic Partner (4)
Other (2)

Unknown (4)
Emergency (7,350)
Elective (2,519)
Urgent (86)

Trauma Center (39)
Medicare (5,595)
Medicaid (924)
Self-pay (319)

Other (3,156)

Marital Status Categorical

Admit Type Categorical

Financial Class Categorical

Care Type Categorical | Acute (9,975)
Geropsychiatric (19)
No. of Comorbidities Numeric Mean: 6.43 (SD =4.25)
No. of Existing Condi- Numeric Mean: 10.67 (SD = 8.05)
tions
Length of Stay (Days) Numeric Mean: 4.28 (SD =4.41)
Same Day Discharge Boolean Yes (105)
No (9,889)
Blood Pressure at Dis- Categorical 80-89 or 120-139 (4,189)
charge
<80 and < 120 (3,529)
90-99 or 140-159 (1,557)
> 99 or > 159 (719)
No. of Previous Admis- Numeric Mean: 1.55 (SD =2.87)
sions
Next Admission < 30 Categorical Yes (2,697), 27%

Days

(Response Variable) No (7,297), 73%

Additional Features for Cost Prediction ‘

Current Admit Cost ($) Numeric Mean: 53,530 (SD = 72,888)
Current Bed Charge ($) Numeric Mean: 10,120 (SD = 14,458)
Cost of Next Readmis- Numeric Mean: 54,140 (SD = 74,400)
sion ($)

(Response Variable)

Table 2: Overview of the feature set used in the prediction
of “risk” and “cost” of readmission

6 Result Analysis

We evaluated the machine learning methods from Section 4
for the risk and cost of hospital readmission prediction prob-
lems described in Section 3 on the dataset described in Sec-
tion 5. In this section we present the results and discuss the
key observations.
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Figure 1: Distribution of hospital readmission cost in the
readmission dataset

Risk Prediction

The results of the five machine learning algorithms as well
as the LACE baseline, are presented in Figures 2-5 and Ta-
ble 3. Among the existing risk prediction tools, the LACE
index is regularly used in hospitals (Zheng et al. 2015). This
index considers four numerical variables, namely length of
stay (L), acuity level of admission (A), comorbidity condi-
tion (C), and use of emergency rooms (E). A LACE score is
obtained by summing up the values of these four variables.
A threshold (usually > 10) is then set to determine patients
with “high” readmission risk (Zheng et al. 2015). We use
LACE as a baseline to compare the performance of the ma-
chine learning algorithms we investigate in this paper.

We evaluated the models developed with all five machine
learning methods using 10-fold cross-validation across dif-
ferent threshold values (see Figures 2-5). This was done so
that a threshold value that would give the highest possible
sensitivity, but at the same time also have comparable speci-
ficity to that of the LACE tool can be identified. It should be
noted that for the 30-day risk of readmission prediction task,
higher sensitivity is more desirable. This is because correctly
identifying the “high risk” patients who are likely to be read-
mitted within 30 days is more crucial than correctly identify-
ing low risk patients (discussed in Section 1). Overall results
corresponding to the best threshold values for all the mod-
els are shown in Table 3, and Figure 6 shows the trade-off
between sensitivity and specificity for all the models.

There are three key observations to be made from these
results. First, the results in Table 3 suggest that most ma-
chine learning methods show promising results when com-
pared to the baseline LACE method. Not only was it possible
to achieve higher sensitivity than LACE, but this was done
without penalizing the specificity and precision too much.
More in detail, with 3 out of the 5 machine learning meth-
ods we achieved a sensitivity of over 80%, while the results
for specificity and precision remained comparable to that of
LACE (sensitivity = 76%). The sensitivity results for the
other two methods, namely SVM and decision tree, were
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Figure 2: Risk prediction performance results of SVM

Decision Tree
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Figure 3: Risk prediction performance results of Decision
Trees

also very high (sensitivity > 94%) and the precision score
was comparable, but the proportion of “low risk” instances
which were correctly identified was very low (specificity
< 9%).

Second, the rate of change in sensitivity and specificity
slightly differs across different machine learning methods.
For instance, as the threshold values increase, the sensitiv-
ity and specificity in the decision trees, logistic regression,
and generalised boosted models exhibit sigmoid curves (see
Figure 3, and 5), characterized by a small progression in the
beginning and then accelerating and converging over larger
threshold values. For random forest models, the change is
almost linear (Figure 4). For SVM a steep drop in sensi-
tivity and rise in specificity is observed between 0.24 to

Random Forest
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Figure 4: Risk prediction performance results of Random
Forest
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Algorithm Sensitivity | Specificity | Precision
(%) (%) (%)
LACE 76.42 38.95 31.63
SVM 98.11 1.84 26.98
Decision Trees 94.07 9.04 27.65
Random Forest 84.76 25.60 29.63
Logistic Regression | 92.47 13.24 28.26
GBM 90.43 18.24 29.02

Table 3: Performance comparison of different machine
learning methods for the task of predicting whether the next
hospital admission of a patient will be within 30 days. The
results are based on 10-fold cross-validation.

Generalized Boosted Decision Tree
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Figure 5: Risk prediction performance results of GBM

0.28 threshold values (Figure 2). Further investigation of the
SVM results showed that there was big increase in the num-
ber of true negatives and false negatives around these thresh-
old values, illustrating that SVM is less robust than the other
methods, and that its good performance depends on fine tun-
ing of the cutoff threshold.

The third key observation is that, across all methods,
50-60% is the maximum score that can be achieved when
a “perfect” balance across all measures (sensitivity, speci-
ficity, accuracy and precision) is desired. This is a meaning-
ful result because it shows that the machine learning meth-
ods can give good performance for the majority (> 50%) of
instances across all measures. It is interesting to observe in
Figures 2-5 that this optimal point of balance emerges within
the same small range of threshold values across all different
machine learning methods.

Overall, for the risk prediction task, the results for most
machine learning methods for any type of readmission (“all-
cause”) are promising when compared to a standardized risk
prediction tool (LACE). It was possible to achieve higher
sensitivity (recall) without penalizing the specificity and pre-
cision too much. Improving the precision and specificity fur-
ther will be a task to explore in future.

Cost Prediction

We measured the performance of the methods for cost pre-
diction using Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE). A lower error indicates that the pre-
dicted dollar amount is closer to the actual cost. As for
risk prediction, we evaluated all models using 10-fold cross-
validation. An overview of MAE and RMSE results is pre-
sented in Table 4. We compared the results of four machine
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Figure 6: ROC curve comparing risk prediction performance
results. It shows the trade-off between sensitivity and speci-
ficity. It can be seen that GBM is the best classifer, while
SVM is the worst.

learning methods, namely linear regression, M5 model tree,
generalised boosted model and decision tree, with those of
two baseline methods:

o Average Baseline (AB): the Average Baseline (AB) mea-
sure is the overall mean cost i of individual average en-
counter costs for all the beneficiaries within the training
set prior to the current encounter for which we are pre-
dicting the cost. This mean (u) score is then used as the
baseline predicted cost for all patient-encounter pairs in
the test set.

e Current Admit Cost (CAC): the Current Admit Cost
(CAC) baseline model is a linear regression model fitted
using only the current admission cost during the training
period as a predictor variable, with next readmission cost
being the response variable. Note that the difference be-
tween this current admit cost baseline and the competing
linear regression model is that all features (as shown Table
2) from the readmission dataset were used to train the lin-
ear regression model, while only the ‘current admit cost’
variable was used in the CAC baseline model.

Algorithm MAE ($) | RMSE ($)
Average Baseline (AB) 21,609 27,176
Current Admit Cost (CAC) 20,882 26,458
Linear Regression (LM) 20,232 26,124
M5 Model Tree (M5) 18,263 24,824
Generalised Boosted Model (GBM) 20,065 26,388
Decision Tree (DT) (cp=0.01) 20,512 26,328

Table 4: Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) in dollars for the cost prediction task

As can be seen in Table 4, for all-cause readmissions, our
data mining models exhibit lower prediction error compared
to the Average Baseline (AB) method in terms of both MAE
and RMSE. Within that, M5 model tree has the lowest pre-
diction error. The errors for the Current Admit Cost (CAC)
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Figure 7: Comparison of average Mean Absolute Error
(MAE) across different cost buckets.

baseline method were interestingly enough comparable to
the errors of several of the more sophisticated methods.

Overall, two key observations can be made from the per-
formance results shown in Table 4. First, current admit cost
and average cost are strong baseline models, and therefore
current hospital admission cost or average cost alone can
be a good indicator for the next readmission cost provided
it is available to the care provider. Second, among all ma-
chine learning algorithms, M5 model tree performed best
and achieved a substantially lower MAE than strong base-
line models for predicting next readmission cost.

The knowledge that the cost distribution in our dataset is
highly skewed (see Figure 1), as is known to be the case
with healthcare costs in general, inspired us to delve deeper
into investigating for which fraction of the patients our mod-
els can predict costs with error margins that are reasonably
bounded. To this end, we divided the population into 11 dif-
ferent cost buckets, shown on the horizontal axis in Figure
7. The cost buckets range from the 5% lowest cost patients
(subpopulation 0-5%) to the 10% highest cost patients (sub-
population 90-100%). Next, for each of our cost prediction
methods, we measured the average MAE over all patients
within each subpopulation. The results are shown in Figure
7.

It is interesting to observe that all methods display a sim-
ilar behavior: the predictions across all models are most ac-
curate within the middle of the range, i.e. for moderate cost
patients (40-70%). For the low cost patients (0-40%), the
machine learning techniques clearly outperform the base-
line models. This is especially the case for the M5 model
tree. For the high-cost patients (70-100%) it is interestingly
enough the other way around, although the difference in er-
ror between the different techniques is relatively small com-
pared to the size of the actual healthcare costs in this case.
Still, the results in Figure 7 indicate that it might be bene-
ficial to train a hierarchical model that first predicts a cost
bucket and then uses a model trained specifically for that
cost bucket to arrive at a final prediction in dollars.

7 Conclusion

The rate of hospital readmissions of patients is a key mea-
sure that is tracked for numerous reasons. Consequently, risk
stratification of a population and readmission models are be-



coming increasingly popular. Recent data mining efforts ei-
ther predict healthcare costs or risk of hospital readmission,
but not both. The goal of this study was a dual predictive
modeling effort that utilizes healthcare data to predict the
risk and cost of any hospital readmission (‘““all-cause’). For
this purpose, we explored machine learning algorithms to
do accurate predictions for risk and cost of 30-day readmis-
sion. For the task of risk prediction, results for most machine
learning methods for any type of readmission (“‘all-cause”)
were promising when compared to a standardized risk pre-
diction tool (LACE). It was possible to achieve higher sen-
sitivity (recall) without penalizing the specificity and preci-
sion too much. On the cost prediction side, two key obser-
vations were made from the performance results of the ma-
chine learning methods. First, average admission cost and
current admission cost are strong predictors, and therefore
they alone can be a good indicator for the next readmission
cost. Second, among the four machine learning algorithms,
M5 model tree consistently performed better and achieved
a substantially lower MAE than strong baseline models for
predicting next readmission cost.
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